
Some PostScript Transparency
Experiments Using Acrobat 5.0

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2002 as GuruGram #09-D
http://www.tinaja.com
don@tinaja.com
(928) 428-4073

What follows is a work in process. I had hoped to be able to show some simple
PostScript utilities that let you explore the transparency features of Acrobat 5. My
present solution works, but is horrendously awkward and incomplete. So, I am
presenting it here in hopes you can add to it and help solve some key puzzles.

What we really want is one of these…

 … gotten by sending ordinary PostScript code to Acrobat Distiller. Because
PostScript uses an opaque imaging model, only an indirect method will normally
work to produce transparent .PDF files. And such transparent .PDF files can only
be transformed back into PostScript by an ungainly and cumbersome process.
Thus .PDF will remain the format of choice for transparency distribution.

The following documents and tools are essential to understanding transparency…

 PDF Reference Manual
 PDFMark Reference Manual
 PostScript Reference Manual
 Transparency in PDF
 Making a Transparent Color Rectangle
 Acrobat SDK Development Kit

Some of these are included in the Acrobat 5 CD disk, while others can be gotten
by using the above links. It is especially important to master the COS Objects
section of the PDFmark Reference Manual.

—1—

http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://partners.adobe.com/asn/developer/acrosdk/docs.html
http://partners.adobe.com/asn/developer/acrosdk/docs.html
http://partners.adobe.com/asn/developer/technotes/postscript.html
http://partners.adobe.com/asn/developer/acrosdk/docs.html
http://support.adobe.com/devsup/devsup.nsf/docs/51864.htm
http://partners.adobe.com/asn/developer/acrosdk

I’ve placed a simple PostScript "transparent square on square" sourcecode as my
g9demox.psl; its interim .PDF file as g9demox.pdf; and its final hand altered and
fully transparent .PDF file result as g9demo.pdf Having these three files on hand
as printouts will greatly ease understanding what follows.

It also pays to create a BARE Distiller Job Option ahead of time. A "minimal" one
that does a 1.4 distill but does not do any compression. Or anything else complex
such as embedding fonts. Later on and if needed, you can use the FLATVUE.PSL
utility of GuruGram #8 to convert any Flate streams to plaintext.

PDF Graphic State Objects

The .PDF format maintains a graphics state that is both open-ended and more
complex than PostScript. Besides PostScript’s usual setgray or its setlinewidth
and similar operators, new graphics operators can be dictionary defined and
passed to Acrobat objects.

Of crucial interest here is the /CA operator used to set the stroke transparency,
the /ca operator used for the fill transparency, and the /BM operator used to pick
all of the dozens of super fancy optional transparency mode names.

Those COS Objects are easily used by pdfmark to let Distiller create a new
graphics state object to be installed in the final transparent .PDF file…

 % make a new graphics state
 [/_objdef {newgsstate} /type /dict /OBJ pdfmark

 % fill the new overlay graphics state
 [{newgsstate}
 <<
 /Type /ExtGState
 /ca 0.5 % fill transparency is 0.5
 /CA 0.5 % stroke transparency is 0.5
 /BM /Normal
 /AIS false
 /OP false
 /OPM 1
 /op true
 >> /PUT

 pdfmark

One new graphics state object will be needed for the transparency overlay. Since
new graphics operators are cumulative and "remembered", use of bracketing
saves and restores as q and Q will be needed to localize the tranparency to the
desired graphics. As was the case on our previous page.

Note that this only makes a .PDF graphics state object. It does not link or install it
for use by other objects.

-2 -

http://www.tinaja.com/glib/g9demox.psl
http://www.tinaja.com/glib/g9demox.pdf
http://www.tinaja.com/glib/g9demo.pdf
http://www.tinaja.com/glib/flatvue.psl
http://www.tinaja.com/gurgrm01.asp

Xobject Graphic Stream Objects

Adobe would like you to use a special type of subroutine called an XObject for
your transparency graphics. They call these /Group objects having new subtype
/Transparency. But apparently, any old graphics state in the page stream can be
forced to take place at any time. Letting you (as we have on page one) go from
opaque to transparent and back again in the same page stream.

I have yet to find any obvious way to create a Group object "subroutine" with
PostScript. The closest I’ve found is the BP, short for Begin Picture generator…

% start a Begin Picture graphics overlay subroutine...
[/BBox [0 0 1000 1000] /_objdef {overlaypix} /BP pdfmark

% fill the Begin Picture graphics overlay Xobject subroutine...
0 0.5 1 setrgbcolor % on the aqua side of blue
4 4 6 6 rectfill

% complete the Begin Picture graphics overlay Xobject...
[/EP pdfmark

Such a Xobject "subroutine" can be shown where desired by…

[{overlaypix} /SP pdfmark

We now have the ability to create opaque objects, transparent objects, and the
graphics states that let you be one or the other. Sadly, I have not yet found out
how to make PostScript cause the crucial "Please change to a new graphics state
named zorch" that forces distiller to enter a /GS4 gs or similar command into the
present page stream. While simultaneously listing /GS4 19 0 R or wherever as an
available resource.

This may be because I missed the obvious, or that Adobe omitted or made this
capability difficult. Since GhostScript easily forces graphics states, leaving such a
fundamental capability off of PostScript is utterly unthinkable.

My present sneaky and ungainly workaround instead involves…

Force Feeding a Python

OK, we can now use PostScript to create a .PDF file with all the graphics resources
needed for transparency. But apparently do not yet know how to activate the
links from the PostScript end. So, (he-he-he), we’ll simply post-edit the Acrobat
file to force the needed linkings.

To do this, bring the .PDF file up in Wordpad and save to a new filename. Then
snoop around till you find the object number(s) for your new graphic state(s).
Then find the object number of the page stream that is to include your
transparency change. Then find the object number of the Resources for that page.
Write these numbers down.

-3 -

http://www.adobe.com
http://www.adobe.com
http://www.artifex.com/pressreleases/GS70.htm
http://www.tinaja.com/post01.asp

Next, decide how many new graphic state objects you have, and shop around for
the lowest unused /GS variable names. In our square-on-square demo, /GS2 is the
first available. It is super important to not use the same variable name for two
different graphics states!

To correct the graphics state linkings…

(1) Insert an appropriate new "change transparency" command such
as /GS2 gs into the correct place in the page stream.

(2) Insert an appropriate "link graphics state" command such as
/GS2 19 0 R into the correct place in the resources dictionary.
The second number is the desired graphics state object.

(3) Save the new file and bring it up in Acrobat to auto-rebuild
the cross reference and byte count. Then do a save as to
preserve the repairs as your final file.

Should you need more than one linking, repeat the above process as needed. In
the g9demox.psl example, a /GS2 gs will go into stream Object #2 , and a
/GS2 1 0 R goes into Resource Object #8. The new graphics state is Object #1.

Failed attempts at linking…

There is an obvious /PUT command available to the pdfmark operator, but I
seem unable to get it to do anything useful in the way of linking resources..

Ferinstance, the command string…

 [{ThisPage} <</Resources <</ExtGState <<
 /GS4 {newgsstate}>> >> >> /PUT pdfmark

 … seems to create a new and duplicate(!) Resources entry that is ignored by
Acrobat. Same goes for {NextPage}. And, while {Catalog} seems to enter just fine,
this appears to be out of the resource inheritibility parentage range.

 < insert many frustrating lost hours here >

I did manage to find an alternate method that is pretty nigh but not plumb.
While somewhat more complex, it lets you actually create any XObject you like,
but still demands a simple (often changing only one byte) post patch. I call it…

The Bait and Switch Method

A PDF stream object apparently consists of a data fork (the actual stream) and a
resource fork (a companion dictionary). You can use pdfmark’s /PUT command to

-4 -

http://www.tinaja.com/glib/g9demox.psl

enter either stream or dictinary items. So long as you do only one or the other
with any single /PUT command. Let’s try it.

You have to work from the inside out. First, create a transparent graphics state
pretty much like we did before…

 [/_objdef {XGS1} /type /dict /OBJ pdfmark

 [{XGS1}
 <<
 /Type /ExtGState
 /ca 0.5 % fill transparency is 0.5
 /CA 0.5 % stroke transparency is 0.5
 /BM /Normal
 /Name /XGS1
 /AIS false
 /OP false
 /OPM 1
 /op true
 >> /PUT pdfmark

Next, create a resource dictionary object for your Xobject…

 [/_objdef {XR1} /type /dict /OBJ pdfmark

 [{XR1} <<
 /ProcSet [/PDF]
 /ExtGState << /XGS1 {XGS1} >>
 >> /PUT pdfmark

And then create your actual Xobject, starting with its dictionary…

 [/_objdef {XOBJ1} /type /stream /OBJ pdfmark

 [{XOBJ1} <<
 /Type /XObject
 /Subtype /Form
 /FormType 1
 /Name /XOBJ1
 /BBox [0 0 1000 1000]
 /Resources {XR1}
 /Matrix [1 0 0 1 0 0]
 >> /PUT pdfmark

Note that Distiller has used an internal name of {XGS1} to link the Resource
Dictionary to the graphics state. And {XR1} to link the Xobject to its Resource
Dictionary. Note further that these variables are internal and local to Distiller only.

We then add the stream to our new Xobject…

-5 -

 [{XOBJ1}
 (0 0.5 1 rg
 /XGS1 gs
 4 4 6 6 re
 f) /PUT pdfmark

Sadly, there are apparently still two big gotchas here. The first is that you have to
enter your stream data as PDF commands rather than PostScript. Ferinstance, a
4 4 6 6 rectfill becomes 4 4 6 6 re.

If your PostScript is too complex to sight convert, try doing another PDF whose
sole goal is to convert the code for you. The big advantage of this method is that
you can in fact create and link graphic states to both your XObject and its stream
any way you like. And transparency groups become possible.

The second infuriating gotcha is that I found no way to do a…

 [{XOBJ1} /SP pdfmark

 …using /SP to enter your new XObject. Despite the Xobject and its Resource
file done via /BP and /EP begin and end picture looking nearly identical to me. I
am thoroughly puzzled over this apparent restriction. Chances are there is an
internal picture name directory in Distiller I have not yet found.

So, to continue, you create a regular and temporary external form object the old
/BP and /EP way. Just like we did earlier…

 [/BBox [0 0 1000 1000] /_objdef {tempoverlay} /BP pdfmark

 0 0.5 1 setrgbcolor % on the aqua side of blue
 4 4 6 6 rectfill % new square temporarily opaque

 [/EP pdfmark

When /SP gets called and distilled, a form object usually named /FM1 gets
created. The only tiny remaining problem is that the form resources are pointing
to the wrong and opaque Xobject. We can finally do our "bait and switch" by post
patching.

Post Patching is done simply by inspecting the file and finding the names of the
wanted and unwanted transparency Xobjects. The patch itself is usually as easy as
changing /FM1 4 0 obj to /FM1 3 0 obj. Normally no xref rebuild should be
needed, so long as the old and new object numbers have the same number of
digits. Be sure to watch this detail.

Thus, our post patch still remains but is much simpler and safer than before. New
example code for you to inspect and use appears as g9demoy.psl; its
intermediate .PDF file as g9demoyx.pdf; and its final hand altered and fully
transparent .PDF file result as g9demoy.pdf.

-6 -

http://www.tinaja.com/glib/g9demoy.psl
http://www.tinaja.com/glib/g9demoyx.pdf
http://www.tinaja.com/glib/g9demoy.pdf

A Few More Gotchas

Using Wordpad for post editing can be dangerous as it may trash an occasional
control command character in a font or other compressed stream. Word itself is
often acceptably better, but your best bet is to do a true PDF document search
and replace that has no excluded characters and makes no changes in line ending
terminations. A custom PostScript-as-language routine can easily handle this. As
could a custom plugin.

While you can apparently add any dictionary item or append any stream content
to your external Xobject at any time, apparently the Xobjects created internally by
the /BP and /EP process will not let you append stream content. But they will let
you add less useful dictionary items. Note once again that /PUT will create a
duplicate and useless dictionary entry instead of overwriting an existing one.

PDFmark defined streams are apparently forced into Flate Decoding whether you
like it or not. If needed, you can uncompress these using FLATEVUE.PDF or with
the SDK Uncompress plugin. Note that the later infuriatingly "erases" anything
not yet correctly linked.

Adobe does not want you to make graphics state changes inside an Xobject.
Since our example internally forces an internal Xobject transparency state change,
certain post PDF plugins might not work as they may get overridden. Specifically,
the UncompressPDF in the Acrobat SDK apparently will not let you change the
transparency of the blue box on page one.

How Many Mathematicians Does it Take…

… to change a light bulb? Only one, who hands the bulb to four Californians.
Thus reducing the problem to a previously solved riddle.

We thus now have a method to explore and actually use Acrobat transparency by
using distilled PostScript. It works just fine but needs an annoying hand patch at
end process. To make the solution general and convenient, your help is needed in
solving the (apparently) simpler problem of using PostScript to force a graphics
change and autolink in Distiller.

As of this latest GuruGram update, we have full PostScript transparency via
Distiller, but still require a one byte, non index trashing post patch. The
remaining problem boils down to "How do I feed the /SP pdfmark command in
Distiller my own named Xobject that was not created by /BP and /EP?"

Let’s hear from you.

Consulting services available per http://www.tinaja.com/info01.asp.

-7 -

http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/startsdk.pdf
http://www.tinaja.com/glib/flatevue.pdf
http://www.tinaja.com/glib/startsdk.pdf
http://www.tinaja.com/plugins/UncompressPDF.api
http://www.tinaja.com/glib/startsdk.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/info01.asp

